�embed PSP5.Image ���

march 1999

by John Worsham

Level Building - Optimizing for frame rate

	Level building is an art. The level you build is your imagination conceptualized, visualized, then finally realized. While I dare not preach to the more astute on what I think good level design is, I will attempt to show you things on the more technical side that can conceivably increase your level's frame-rate anywhere from 15 to 30 fps. Impossible? To grasp this idea, it's important to know what mystic little things affect that little fps display on the screen, to know what the engine is actually doing, what it's not doing, and more importantly - what it's struggling with most.

	"Why doesn't the GCS run as fast as Quake?!?"

	How often has this been asked? 100 times more than it's actually been answered, or answered correctly. Since this has probably been asked more than any other question, let's finally put this to rest and answer it. But to answer 'Why doesn't the GCS run as fast as Quake', we must first answer the question - 'Why does Quake run so fast to begin with?'

	Quake's worlds are interpreted from Binary Space Partition maps, or BSP trees for short. That is, they are generally pre-built/rendered before the actual game takes place. So what exactly is BSP? Basically, it's a method of depth sorting in which each area of the game-world is divided into "nodes". Nodes are atomic spaces, that is - spaces determined during compile time in which no matter where the player's viewpoint is within a particular node, no wall or object within this space can occlude another. Thus, hidden surface removal (HSR) is achieved. During game play the walls in each node are simply read from a pre-built data structure (BSP Trees) and blitted to the screen without much of the overhead required for calculating HSR. The advantage to this of course is speed. The drawback is the worlds generally must remain static, wall endpoints cannot change without performance penalties, often involving the destruction and rebuilding of nodes, which means memory allocation/de-allocation, which usually results in cache thrashing.

	GCS worlds are interpreted very differently. The world maps are built and read into the engine with the understanding that anything at any moment may change. This allows for more dynamic freedom since it's maps can be altered in real-time, though at the cost of calculation overhead (ie: framerate). If you pay attention to when you exit your level from the editor, sometimes you may notice a fan of red lines extending across the map. These lines represent the intersection of everything it spent drawing during the last game frame. This means that every wall and object within this field of view was calculated (even recalculated) to be drawn, whether it was actually visible or not. Look closely again at your map. You may have only been inside a very small enclosed room, yet it seems as if the engine was trying to draw walls far beyond the little room you were in. Seems like a lot of wasted processing, eh? It certainly is, and this will be the starting point for our optimizing, where we introduce BSP to the GCS...

	It should be clear now that the number one thing affecting frame rate (software-wise) is wall-drawing. Our goal is to see to it that those red lines extend no further than necessary by eliminating as many walls as possible from the rendering calculations. BSP compilers do this automatically. We don't have the luxury of a BSP compiler, so we will have to do the work ourselves. What, you ask? How can we possibly implement BSP into the GCS? Binary Space Partitioning is a logical concept, not a hard-coded technology. Don't confuse this with BSP Trees - which are indeed program data structures that hold partition information, which we will not be using or requiring. The theory and mechanics of Binary Space Partitioning can be applied to anything where area sorting is required, no matter how abstract, and is not restricted to the context of 3D games. Let's illustrate the method with a very simple example map of 2 rooms and 1 L-shaped hallway (this is a conceptual demonstration, not actual, so forgive the innacuracy of the wall endpoints):

�embed Paint.Picture ���

	Figure 1.

	Our first task is to divide this map into "logical areas" or "nodes". Logical areas can be determined by examining the vertexes where the walls meet, dividing the map into primitive rectangles (or possibly triangles) so that no matter where the player stands within each area all of it's walls will be visible and are not blocked by another. This particular map can be divided into 4 distinct logical areas (labeled 1,2,3, and 4 for simplicity).

	Let's say the player is in room 1, at the position marked '1'. From that position we can see what walls would and would not be visible. What we are interested in are the walls that would not be visible. It's obvious none of room 4 would be visible, and the south wall of hallway 3 would be blocked as well. Normally you would assume that the engine would know better than to try to draw room 4 or the south part of hallway 3, but since the GCS is rendering "on-the-fly" and not processing the walls from a pre-built data structure (BSP Tree) we will need to attend to this task ourselves.

�embed Paint.Picture ���

	Figure 2.

	(Again, forgive the sloppiness, this is just a free-hand illustration!) What we've done is 'X' all the walls we know we would never be able to see from point '1'. So how do we tell the engine to not even consider those for drawing? Meet FTC. The FTC (Floor-To-Ceiling) blocker will be our tool - when this property is set to a solid wall (only solid walls will work) it tells the engine not to consider drawing ANYTHING behind it from the viewpoint of the player. If you want the fastest frame-rate possible you'd better get used to this feature - it's the single most important optimizing tool you will be using. Looking at the map, from point '1', we can see that we can block those walls marked with red 'X's' by setting FTC to the top-right and right walls of room 1, as shown below in Figure 3:

�embed Paint.Picture ����embed Paint.Picture ���	

	Figure 3.				Figure 4.

	The lines in the 1st illustration represent the players point of view at position '1' to the outer vertexes of the FTC walls, and everything between those lines, behind the FTC marked walls, will not be considered for drawing. Let's also examine what else we have done. If the player was standing in the top-right corner of room 1 (as shown in Figure 4), the top FTC wall would also block most of hallway 2 and all of hallway 3 - this is good, more than what we initially asked for. From the top-right corner the player would not be able to see those hallway walls anyway so we are granted even more optimization. While we're at it, go ahead and and set FTC to the top-left wall of room 1.

	At this stage that's about all the FTC blocking we will need to do in room 1- there are no other walls that need to be blocked. Now apply what you did in room 1 to the rest of the map, which when finished should look like this (the blue scribble spells 'FTC'):

�embed Paint.Picture ���

	Figure 5.

	Congratulations! You've just put BSP to work in the GCS. Now if you ran this level, the engine would only process the walls that would be visible and nothing else - exactly what we wanted. This is pretty much the same process BSP map compilers, such as those used for Quake or Doom, do when generating their levels. Armed with this thinking, go through your own level - every room, every hallway - examine them closely from every possible viewpoint the player could have, break each area up as we have done here, blocking as many walls as possible. It may be a time-consuming process, but in the end will be well rewarded. The larger your level, the more performance gain you will see from this. To offer a real-world example, i've taken levels averaging around 10 fps, and by using the technique above, increased that figure to well over 40 fps. The method works, the results are unquestionable. Use it.

Some other things to consider:

	'Don't Draw Backsides' is perhaps the most commonly used optimization feature of the GCS, and is appropriate for walls that cannot be occluded by using FTC (such as walls sitting in the middle of a room). The GCS editor represents backsides of walls by a grey line on one side of the wall. When you set a wall to not draw backsides, this is telling the engine that if you are facing the side of the wall where the grey line is to not draw that wall at all. This is useful for boxes or columns in your level, where you can't very well use FTC without creating a visual disaster. You want to be sure to arrange the walls of the objects so the grey-lined sides are on the inside of the rectangle, then set each wall to 'not draw backsides'. Simple, yet the extra 1 fps you gain by doing this here and there will soon add up.

	'Don't Draw if Far Away' is generally only useful if you have not implemented any of the techniques listed above, though it may be set to objects as an extra insurance policy to help make sure that if all else fails to just not draw this thing if it's too far away. Objects that benefit most from this attribute would be those set to 'Not Fade with Distance' since these types of objects don't "zero-themselves-out" with fading.

	Whenever possible use as few walls as you can get away with in the visible scene. That is to say, it's best to stretch a large wall rather than to build one up from smaller components, and to keep the number of walls visible at any one time to a minimum. The reason for this is because lighting and HSR are performed for each vertex during a game frame. The more vertexes - the more calculating - the slower it takes to render. This applies especially to textured polygons. While wall segments are basically calculated from 4 horizontally fixed vertexes of(x0,y0,z0) and (x1,y1,z1), polygons complicate the situation with 4 non-planar points, which if textured further intensifies the processing of having to correctly texture-map it's angles.

	Lights should be used sparingly - don't cluster a bunch in one visible scene. The fewer the better, particularly colored lights. Also, for visual considerations, try to keep colored lights spaced apart enough so they don't collide.

	Windowed walls - keep them to a bare minimum. In some cases you might be able to get better performance by constructing multiple solid walls together to form a single windowed-wall (keep in mind, however, that every wall adds 4 more vertexes to the calculations). Windowed walls by their nature must allow everything behind them to be drawn, therefore FTC is not an option. Avoid 'venetian blind' type windows. When possible either use vertically aligned holes or complete squares. This is due to how the data structure containing the hole-data for the wall is handled.

	Sounds effects, or 'Wavs', also chew up CPU time, particularly on older sound cards. Avoid drowning a scene with too many of these playing at once. CD music on the other hand may be freely played as much as you like. Midi music, in theory, requires almost zero processing - however practice has shown in some systems this to not be the case. My guess is this may be a problem with DirectSound attempting to patch the music through non-existent hardware buffers on older soundcards which are incapable of hardware acceleration. Only testing and examining any frame-rate changes will reveal this.

	3D acceleration. It's become the objective of game companies to not only keep up with, but push the boundaries of technology, often times, sadly, beyond the means of the average consumer. Programmers are being driven (usually pressured) to pursue the latest and greatest in 3D technology in order to produce the most stunning, cutting-edge games possible, often at the risk of leaving many of us behind with our outdated hardware. In an ideal world, this technology would be readily available to everyone. 	Unfortunately, that's not the world we live in. API's such as DirectX, Glide, Open GL, all offer extradorinary possibilities in 3D rendering - things that just a few years seemed unfathomable, things that are just too tempting for todays programmers to ignore. The problem with this, aside from the obvious fact that it's almost impossible for most of us to keep up, is that these API's all require floating-point transformations. 	You may have heard floating-point calculations are slow on PC's, and if so, you heard right. Back in the days of DOS, floating point math was considered programming suicide when it came to making games, simply because floating-point hardware acceleration did not exist, and even today CPU's are notoriously clumsy when faced with a moveable decimal point (FPU coprocessors offer negligible help since MMX, which is integer-based, and FPU instructions cannot execute simultaneously) . Faster integer based calculations were used instead and it was simply unthinkable to create a 3D game based on floating-point math.

	Oddly enough, using floating-point is pretty much a requirement nowadays if you intend to exploit the benefits of DirectX, and that's where accelerated 3D graphics cards step in. The better ones handle these mathematical transformations with ease, while offering a wide range of built-in capabilities such as alpha-blending, anti-aliasing, triangle-setup, etc. Without hardware acceleration, DirectX has to emulate it before it can use it, meaning it has to push the nasty plate of floating-point spinach over to the CPU to devour this data. So if you've ever wondered why unnaccelerated DOS games run so much faster than their unnaccelerated Windows counterparts (like the GCS for example) this is one of the reasons why.

	Therefore, whether you want to accept it or not, 3D acceleration has become a must. In my opinion (and no-one is paying me to say this), the best price/performance card out there is the Voodoo Banshee. For around $100 you get a 16 meg combo 2D/3D accelerator that ranks right up there with many of the more expensive dedicated accelerators, and prices on it are still continuing to drop. To offer an example of the benefits, I went from a 4 meg S3 Virge GX/2 AGP to the Banshee and watched my frame-rate improve by an average of 25 fps in virtually every game I own, including the GCS. The point is, the technology is getting cheaper, and 3D acceleration is going to have more impact on your game than anything else. If your planning on ugrading soon, do your research on the products available (i'd recommend from game magazine reviews) and pay attention to the card's specs, because for 3D games it will be the single most important investment you can make.

Afterthought:

	There's an old programming adage that says "The fastest code is the code that's never run.". This statement applies to level building as well. If something isn't needed - get rid of it. CPU cycles are scarce enough as it is. It's very easy to take for granted the processing power of today's machines and "build without thinking". As your levels grow larger, the effects of this apathetic way of level design steadily begin to pile up, sometimes to the point that even the fastest computers with the fastest 3D cards are slowed to a crawl. And don't think for one second the guys designing levels at iD Software, or anywhere else for that matter, don't need to worry about how they architect their levels. A programmer can do everything he can to make his engine the fastest, feature-packed there is, yet all it takes is one poorly-constructed level to send it back into the dark-ages of Wolfenstein (I speak from personal experience).

 	

The GCS can perform some amazing things on it's own - work with it and not against it, and it can perform wonders.

Universe Registers - What the hell are these?

	There seems to be a collective perception among novice GCS users that working with Universe Registers is akin to something resembling a black art. While their concept is simple, mastery of their power is indeed a skill that often times requires some creative thinking, but their usefulness is attainable by anyone. First, let's define the term:

	At it's essence, a Universe Register is a storage space, and nothing more. There are 255 of these in the engine: the first 122 are available to you to modify or do with as you see fit. The last 133 are used by the engine, so don't worry with these yet (I'll explain some of these later on). Each of these "storage spaces" can hold a number between 0 and 255. So what's that good for? It's good for plenty. Say for example you wanted to make a lightbulb animation that only turns on when the player presses a switch somewhere. In the switch animation, when the player presses it, set a universe register to a certain value. Then have your light bulb animation do a 'Skip Next if Reg = Val", which will cause the animation to skip to the frame your lightbulb turns on only when that certain Universe Register is equal to the value the switch animation set. This example is fairly simple, yet puts to practice the basic function of all Universe Registers.

	Understanding that, it needs to be said that Universe Registers by themselves don't do anything. They are only useful if something else checks them and then, based on the value, takes action, such as the lightbulb animation described above. This is where the 'black art' term steps in, and creative thinking takes over. I won't go into detail on all the different ways Universe Register values can be used to manipulate actions in a game because the possibilities are almost limitless. All you have to know is the simple 3-part process:

Set Universe Register (1-122) to a value (0-255)

Check the value of the register with an animation, or with an invisible platform.

The animation or platform does something (or doesn't do something) based on the value of that register.

	So what about those untouchable registers above 127? These are "special purpose" registers used by the engine. What this means is they, unlike the registers below 127, either hold critical data or actually do something when set to certain values. Let's examine the registers that hold game data:

122 = frames per second display (not sure if this still works)

123 = player health

124 = number of weapon hits scored on objects

125 = number of ammo rounds fired by player

126 = number of enemies killed

	These registers are to be read only and cannot be modified by you. They are there for you to display on the screen in your game if you like, or to have your animations check the value of these, etc. These are the standard set of untouchables that have been with the GCS since it's creation, and most users understand how these work. If you need more help with these, refer to the GCS manual. Otherwise let's introduce ourselves to some more interesting ones, introduced to GCSW version 2.0:

Universe register(s)	Description

150,151,152		Platform RGB color light set (1024)

153,154,155		Platform RGB color light set (2048)

156,157,158		Platform RGB color light set (3072)

159,160,161		Platform RGB color light set (4096)

162,163,164		Platform RGB color light set (5120)

165,166,167		Platform RGB color light set (6144)

168,169,170		Platform RGB color light set (7168)

171,172,173		Point-light RGB color set

175			Set in animations to create Point-light

176,177,178		Fog RGB color

179			Fog range divisor (1-16, 255 = disable fog)

180			Flying activate/fuel level (255=disable fuel consumption)

181			Switch/Activate (1 = Enter key pressed)

182			Player speed modify (127 = normal, - slower, + faster)

183			Set in animations to set transparency level (1-255)

184			Timer counter (0-60 seconds)

185			Floor height modifier (greater than 127 = raise, less than 127 = lower)

186			Ceiling height modifier (greater than 127 = raise, less than 127= lower)

187			Earthquake register (10 x value = strength/duration)

188			Oxygen level for underwater (255=disable oxygen consumption)

	The use of these are documented in the upgrade tutorial included with the 2.0 release, but are shown here only for the purpose that you should be aware of their existence in case your current game has been modifying any of these. Here's a quick rundown of their functions:

	 Notice the sets of 3 registers for the colors - these represent the Red, Green, Blue intensities which, since each register can hold a value between 0-255, when combined can generate any of 16 million colors. The register triplets 150 through 170 control the custom colors you define which light source platforms may reference. Notice the numbers in paranthesis next to each triplet. These are the numbers you ADD to the 4th Red Box of your light source platform. For example, say I put down a light platform and I want the light to be the color of registers 156,157,158. According to this chart I must add 3072 to the number in the 4th Red Box of the platform's attributes. Simple, just follow the chart. Of course, I would need something to set those registers to my color first. A good way would be to create an animation somewhere that does nothing but set these registers to the colors I want. For example to make a strong red color, I would set 156=255, 157=0, 158=0 (Red=255, Blue=0, Green=0). Finding the right values to mix colors in this manner takes some trial and error before you get your color just right.

	The point light and fog color is done the same way, just fill in the RGB values.

	If you set register 180 to anything except 0, the player will be able to fly by holding down the jump key. The value you set in register 180 is the amount of "fuel" available. Setting this register to 255 will disable fuel consumption and allow the player to fly indefinitely.

	Register 181 always equals 0 unless the player presses the Enter key, at which point it equals 1. You can therefore check if this register equals 1 if you wanted to make a real switch or button in your game that you want the player to "press".

	Register 183 sets the degree of transparency for the animation object in the range 1-255. 1=opaque, 255=total transparent.

	Setting register 182 to a value less than 127 will make the player slow down or speed up if set to a value above 127. This register does not automatically reset, so unless you want the player to continue this speed throughout the level you will need to set this register back to 127.

	Register 184 is nothing but a timer increment. It's value increases by 1 every second of game play until it reaches 60, then goes back to 0. If you want to keep track of minutes, create an animation that checks when this register equals 60, then add 1 to another register, which would therefore hold the number of minutes.

	Registers 185 & 186 may be set to raise or lower the floor & ceiling respectively. Any value greater than 127 will cause the floor/ceiling to raise for one game frame by the amount of the value in the register - minus 127. Likewise, any value less than 127 will cause the floor/ceiling to lower.

	Register 187 will send the level shaking for the duration of the value you enter.

	Register 188 sets the oxygen amount for underwater mode. Setting this value to 255 will disable oxygen consumption and allow the player to remain underwater indefinitely.

	We learned that:

Universe registers below 122 do nothing but store a number between 0 and 255.

To make universe registers below 122 useful you must have animations or invisible platforms check their values, then based on the value perform an action.

Universe registers above 121 are used by the engine for special functions (there are actually many of these not used by the engine, however they may be taken in upgrades so try to avoid using them).

	So you see, there is no magic involved in universe registers themselves - the only magic perhaps is how they are put to use in animations or platforms. Some people have a knack for it, others don't. It takes practice and time to build complicated animations, particularly those whose actions are decided by wide ranges of values set in these registers.

	

Trick of the day:

	This little trick is actually a bug in the engine originally designed to make swinging doors. Put down a wall, make it a door. Edit it's attributes and put '6400' in the 1st Red Box. Test your level, and you should have yourself a revolving wall. Experiment with different values to make it move in different directions, you may even stumble across the creaking door sound.

End of the road...

	Well that's all for this episode, hope you enjoyed it. It hasn't been too easy to find the time to write this, so it's uncertain when the next article will be available - probably a while after the next upgrade is released. That's nice, you may be thinking, but what has been the point to all this? It's simple:

	 I work for you.

	 Think of me as the programmer behind your game, while you are the designer and project leader. I have yet seen a game succeed when there wasn't productive communication between members of a game-development team, and the same applies here. Your demands and needs are what defines my job, and in the end defines the basis of the product you are putting your name to. This is no trivial matter - reputations are on the line, not only mine but yours as well. Livelihoods are at stake, therefore it's something I take very seriously. Simply put, If what I'm doing does not satisfy your needs then I am out of a job. Thus an uninterrupted flow of information is vital, from myself to you and vice versa, and acting on this information is the key to achieving our objectives. Hopefully this article has helped serve that purpose, and if demand warrants, will continue to do so in the future.

	

 Til next time...

Build smart. Play hard.

-John

